Problems at the 2016 MathCounts National Competition

May 10, 2016 at 4:09 pm 3 comments

Yesterday, EdwaEdward Wanrd Wan (WA) became the 2016 MathCounts National Champion. He defeated Luke Robitaille (TX) in the finals of the Countdown Round, 4-3. In the Countdown Round, questions are presented one at a time, and the first student to answer four correctly claims the title.

“This one is officially a nail-biter,” declared Lou DiGioia, MathCounts Executive Director and the moderator of the Countdown Round. Three times, Wan took a one-question lead; and three times, Robitaille tied the score on the following question. The tie was broken for good when Wan answered the following question:

What is the remainder when 999,999,999 is divided by 32?

This year’s winning question was relatively easy. What makes me say that? Well, for starters, when an odd number is divided by an even number, the remainder will be odd; and because 32 is the divisor, the remainder has to be less than 32. Consequently, the remainder is in the set {1, 3, 5, …, 31}, so there are only 16 possible answers.

But more importantly, most MathCounts competitors will be well trained for a problem of this type. It relies on divisibility rules that they should know, and it requires minimal insight to arrive at the correct answer.

MathCounts Logo

I suspect that the following explanation of the solution is the likely thought process that Wan used to solve this problem; of course, all of this occurred in his head in less than 7 seconds, which does make it rather impressive.

A fact that you probably know:

  • A number is divisible by 2 if it’s even.

But said another way…

  • A number is divisible by 2 if the last digit is divisible by 2.

There are then corollary rules for larger powers of 2:

  • A number is divisible by 4 if the last two digits are divisible by 4.
    • For example, we can conclude that 176,432,928 is divisible by 4 because the last two digits form 28, which is divisible by 4. The digits in the hundreds, thousands, and higher place values are somewhat irrelevant, because they represent some multiple of 100 — for instance, the 7 in the ten millions place represents 70,000,000, which is 700,000 × 100 — and every multiple of 100 is divisible by 4.
  • A number is divisible by 8 if the last three digits are divisible by 8.
    • For example, we can conclude that 176,432,376 is divisible by 8 because the last three digits form 376, which is divisible by 8 since 8 × 47 = 376.
  • A number is divisible by 16 if the last four digits are divisible by 16.
  • A number is divisible by 32 if the last five digits are divisible by 32.
  • And so on.

These observations lead to a generalization…

  • A number is divisible by 2n if the last n digits are divisible by 2n.

I won’t take the time to prove that statement here, but you can trust me. (Or maybe you’d like to prove it on your own.) I will, however, explain why it’s relevant.

A number will be divisible by 32 if the last five digits are divisible by 32. Consequently, any number that ends in five 0’s will be divisible by 32, which means that 1,000,000,000 is a multiple of 32. Since 999,999,999 is 1 less than 1,000,000,000, then it must be 1 less than a multiple of 32. Therefore, when 999,999,999 is divided by 32, the remainder will be 31.

The hardest part of solving that problem is recognizing that 999,999,999 is 1 less than a multiple of 32. But for most MathCounts students, that step is not very difficult, hence my contention that this was a relatively easy winning problem.

My favorite problem of the Countdown Round? Now, that’s another story, and it epitomizes what I generally love about MathCounts problems.

If a, b, c, and d are four distinct positive integers such that ab = cd, what is the least possible value of a + b + c + d?

This problem has several things going for it:

  • It’s simply stated.
  • It’s easily understood, even by students who don’t participate in MathCounts.
  • It has an entry point for all students, since most kids can find at least one set of numbers that would work, even if they couldn’t find the set with the least possible sum.
  • Finding the right answer requires convincing yourself that no lesser sum exists.

It’s that last point that I find so interesting. While I was able to find the correct answer, it took a while to convince myself that it was the least possible sum. But since I don’t want to deprive you of any fun, I’ll let you solve the problem on your own.

As a final point, I’ll show you a picture that I took at the event. Do you see the error? What can I say… it’s a math competition… you didn’t expect them to be good with numbers, did you?

MathCounts 2015 2016

Full disclosure: The error was corrected halfway through the competition during a break.

Entry filed under: Uncategorized. Tags: , , , , .

Sound Smart with Math Words XII Puzzle

3 Comments Add your own

  • 1. Mercer  |  May 15, 2016 at 9:08 pm

    2^3 = 8^1 ?

    Reply
  • 2. Tanvir Irfan Chowdhury  |  June 3, 2016 at 11:39 am

    Please correct this line-
    “For example, we can conclude that 176,432,376 is divisible by 8 because the last three digits form 376, which is divisible by 8 since 8 × 57 = 356.”

    Reply
    • 3. venneblock  |  June 16, 2016 at 9:17 pm

      Thanks for spotting that mistake, Tanvir. It’s been fixed.

      Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Trackback this post  |  Subscribe to the comments via RSS Feed


About MJ4MF

The Math Jokes 4 Mathy Folks blog is an online extension to the book Math Jokes 4 Mathy Folks. The blog contains jokes submitted by readers, new jokes discovered by the author, details about speaking appearances and workshops, and other random bits of information that might be interesting to the strange folks who like math jokes.

MJ4MF (offline version)

Math Jokes 4 Mathy Folks is available from Amazon, Borders, Barnes & Noble, NCTM, Robert D. Reed Publishers, and other purveyors of exceptional literature.

Past Posts

May 2016
M T W T F S S
« Apr   Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Enter your email address to subscribe to the MJ4MF blog and receive new posts via email.

Join 232 other followers

Visitor Locations

free counters

%d bloggers like this: