Posts tagged ‘Triple Double’

Russell, Robertson, and Ratios

In the NBA, a triple-double happens when a player has a double-digit total in three of the five categories (points, assists, rebounds, steals, and blocks) in a game. Triple-doubles are very rare; on average, one has been recorded only once every 27 games since 2003. So far this season, there have been 111 triple-doubles throughout the entire NBA — and Russell Westbrook has 41 of them.

Russell Westbrook

Russell Westbrook

In 1961-62, Oscar Robertson set a record that Westbrook is about to break. That year, Robertson recorded 41 triple-doubles in 80 games. Westbrook recorded his 41st triple-double of the current season in just 78 games. When two fractions have the same numerator, the one with the smaller denominator is larger. Consequently, 41/78 > 41/80, so Westbrook’s accomplishment exceeds Robertson.

Oscar Robertson

Oscar Robertson

But ratios can be used to make the point even more dramatically. In the early 1960’s, pro basketball games were played at a faster pace than they are today. In 1961‑62, the average game featured 126.2 possessions, meaning that Robertson typically had more than 60 tries to grab a rebound, make an assist, or score some points. By comparison, there have been an average of just 96.4 possessions per game during the current NBA season, meaning that Westbrook generally has fewer than 50 attempts per game to improve his stat line. So another ratio — the comparison of points, rebounds, and assists to number of possessions — also leans in Westbrook’s favor.

Who knew that either of these guys were such fans of math?

At Discovery Education, we’ve been having a lot of fun writing basketball problems based on real NBA data. Check out a few problems at http://www.discoveryeducation.com/nbamath, and get a glimpse of the NBA Analysis Tool within Math TechbookTM by signing up for a free 60-day trial at http://www.discoveryeducation.com/math.

DE and NBA Math

#mathslamdunk

April 9, 2017 at 5:43 pm Leave a comment

Oreos, Ratios, and the Perfect Cookie

Okay, first things first. What do you call the following shape?

Pill

I call it a pill. My sons call it a racetrack. But is there a formal name for a shape formed by a rectangle with a semicircle attached to each end? If not, I feel like there should be. Place your suggestions in the Comments.

Until I hear a better suggestion, I’m gonna keep callin’ it a pill.

The following trivia question is the reason I ask.

How many pills appear around the circumference of the trademarked design on an Oreo® cookie?

What’s that, you say? You didn’t know that there were little pills along the edge of each wafer on an Oreo cookie? Then you, my friend, need to pay a little more attention.

Because there aren’t just some pills around the circumference. There are 96 of those little buggers, and each of them has a rectangle with a length-to-width ratio of approximately 3:2 between two semicircles.

See for yourself.

Oreo Design

Ironically, the ratio of 3:2 brings me to the main reason I’m writing today.

The original Oreo represented good design: a single layer of vanilla cream filling trapped between two crisp, chocolate wafers. But it always felt lacking to me. If only it had just a little more cream, then it would be perfect. A potential solution arrived in 1974, when Nabisco released the Double Stuf variety — two chocolate wafers with twice as much filling1 as its predecessor. Yet the Double Stuf teetered too far in the opposite direction. It was too sweet.

Which brings me to the delectable treat that I discovered today: the Triple Double Oreo, which is running a strong campaign for the title of World’s Best Cookie. My wife describes it as “the Big Mac of cookies.” Not two but three chocolate wafers with a thin layer of cream filling between each pair. And the pièce de résistance — one layer of vanilla cream filling, the other chocolate.

Now that’s what I call intelligent design.

Triple Double Oreo

It absolutely nails the ratio for wafer:filling.

Original

Double Stuf

Triple Double

Wafers

2

2

3

Filling2

1

1.86

2

Ratio of W:F

2

1.08

1.5

The chart above makes it all clear. The ratio is too high in the original, too low in the Double Stuf, and just right in the Triple Double. Indeed, the Triple Double Oreo is the Little Bear’s porridge of the cookie world.

This reminds me of Reese’s Peanut Butter Cups. While I haven’t quantitatively analyzed the peanut butter to chocolate ratio, qualitatively I would say that the original had a little too much peanut butter, the Big Cup was disgusting with far too much peanut butter, but nirvana was captured with the peanut butter to chocolate ratio in Miniature Reese’s Peanut Butter Cups. (Insert smacking lips sound here.)

So if you read this blog and wonder why I’m so hyper sometimes, now you know. I consume an unholy amount of refined sugar.


1 There is some debate about the actual amount of filling contained in a Double Stuf Oreo cookie. Although a spokesperson for Nabisco claimed that the cookies indeed contain twice as much filling as a regular Oreo, a math class in upstate New York experimentally found that Double Stuf cookies contain only 1.86 times as much cream filling as a regular Oreo. As I generally trust unpaid high school students more than money-grubbing corporate types, I’m using 1.86.

2 The numbers for “filling” are relative to the amount of cream filling in a regular Oreo®.

December 22, 2013 at 9:30 pm 8 comments


About MJ4MF

The Math Jokes 4 Mathy Folks blog is an online extension to the book Math Jokes 4 Mathy Folks. The blog contains jokes submitted by readers, new jokes discovered by the author, details about speaking appearances and workshops, and other random bits of information that might be interesting to the strange folks who like math jokes.

MJ4MF (offline version)

Math Jokes 4 Mathy Folks is available from Amazon, Borders, Barnes & Noble, NCTM, Robert D. Reed Publishers, and other purveyors of exceptional literature.

Past Posts

May 2017
M T W T F S S
« Apr    
1234567
891011121314
15161718192021
22232425262728
293031  

Enter your email address to subscribe to the MJ4MF blog and receive new posts via email.

Join 281 other followers

Visitor Locations

free counters