Posts tagged ‘drink’
The Other Golden Ratio
You’re a math geek. I know that to be true, because you’re reading this blog. And I also know that when you hear golden ratio, you think of this:
Or this:
But there’s another, different — and, dare I say, better? — golden ratio that may be even more important to learn. Especially if you’re one of the mathy folks to whom this adage applies:
Wherever you find four mathematicians, you’ll likely find a fifth.
As Homer Simpson says, “It’s funny ’cause it’s true.”
Like many classroom teachers, I’m often ready for a cocktail on Friday afternoons. And like those teachers, I don’t want to spend a lot of time thinking about it; I don’t want to rummage for a recipe; I just want to relax and have a drink. But, I also don’t want to have the same cocktail every Friday; variety is the spice of life.
So, what’s a boy to do?
Simple. Follow the advice from the folks in the Food Hacks division at Wonder How To, who claim that the following ratio will yield a delicious cocktail every time:
2 : 1 : 1 :: alcohol : sour : sweet
Right now, you’re probably scratching your head and thinking, “Can it really be that simple?”
I’m here to tell you, friends — it is.
For instance, 2 parts tequila, 1 part lime juice, and 1 part triple sec? That’ll get you a tasty margarita.
And 2 parts bourbon, 1 part lemon juice, 1 part simple syrup? None other than a classic whiskey sour.
If you combine 2 parts tequila, 1 part rhubarb liqueur, and 1 part malic acid — it’s what gives green apples their tartness — then you’d be getting close to a drink they call The Scarlet Lantern at Bar Congress in Austin, TX. (They also mix in black cardamom-strawberry shrub. Keep Austin weird, eh?)
Now that you know about the other golden ratio, here’s what you need to do: Organize your liquor cabinet into two parts, hard alcohol and sweet mixers. Then, make sure you keep a couple of sour mixers in your fridge. When you get home on Friday, just grab a bottle from each side of the liquor cabinet and one more from the fridge, pour, and — voila — instant happiness.
Wanna get a little crazy? Find your favorite cube-shaped random number generator, give it three rolls, then choose the appropriate item from each column in the table below.
Die Roll |
Alcohol |
Sour |
Sweet |
1 |
Tequila |
Lemon Juice |
Simple Syrup |
2 |
Vodka |
Lime Juice |
Triple Sec |
3 |
Rum |
Grapefruit Juice |
Cointreau |
4 |
Rye Whiskey |
Strawberry Shrub |
Gran Marnier |
5 |
Bourbon |
Bloody Mary Mix |
Honey-Ginger Syrup |
6 |
Mezcal |
Dry Cider |
Grenadine |
Personally, I’m hoping for 6-3-5, which is kind of like a Mezcal Paloma, sort of like a Honey and Smoke, but not really similar enough to be either one. So, I guess I get to name it. And given what I’ve heard about the fat-burning properties of honey and grapefruit juice, I’m going to call this newly minted beverage the Weight Watcher.
Now we just need to come up with names for the other 215 combinations. I’ll get started on that right away… soon as I finish this drink.
The Math of Maker’s Mark
Last week, Maker’s Mark announced that they would change their recipe. According to COO Bob Samuels, the company was planning to reduce the alcohol content of its bourbon from 45 percent to 42 percent by replacing the removed alcohol with water. But outcry from thousands of bourbon drinkers convinced them to abandon their new 84-proof recipe and continue stocking shelves with 90-proof spirits.
This morning, sports reporters Tony Bruno and Harry Mayes suggested that bourbon drinkers were opposed to the change because they want to get drunk faster.
This got me to thinking about math.
As you know, mathematicians know a thing or two about alcohol.
Where there are four mathematicians, you’ll likely find a fifth.
And so do mathematical objects.
A definite integral walks into a bar. “Ten shots of whiskey, please.”
The bartender asks, “You sure you can handle that?”
“Don’t worry,” says the integral. “I know my limits.”
In the U.S., a “standard” drink is one that contains 0.6 fluid ounces of alcohol, but a standard drink does not necessarily correspond to a typical serving size. In practice, a typical drink of bourbon is a 1.5-ounce pour.
So what does this mean for Maker’s Mark? Sticking with 90-proof bourbon means that a 1.5-ounce drink will contain 0.675 fluid ounces of alcohol, whereas the revised 84-proof bourbon would have contained 0.63 fluid ounces of alcohol. Does that extra 0.045 fluid ounces really make a difference?
A little bit, but not much.
As shown in the table below, a 200-pound man would need to consume 4.76 drinks of 84-proof spirits to reach the legal blood alcohol content limit of 0.08, yet he would only need to down 4.44 drinks of 90-proof spirits. The difference is small. Another third of a drink isn’t much when you’ve already downed 4½.
Number of Drinks to Become Legally Drunk (0.08 BAC) | |||
Weight (lbs) | Typical Spirits (80 Proof) |
Proposed Maker’s Mark (84 Proof) |
Original Maker’s Mark (90 Proof) |
100 | 2.50 | 2.38 | 2.22 |
150 | 3.75 | 3.57 | 3.33 |
200 | 5.00 | 4.76 | 4.44 |
250 | 6.25 | 5.95 | 5.56 |
Note that this chart is for men; women of the same weight would require fewer drinks to reach the same level of intoxication. In addition, time is not reflected in this chart. Because of normal body processes, a person’s BAC is reduced by 0.01% every 40 minutes.
Still, the data seems clear. The revised Maker’s Mark recipe would cause intoxication almost as quickly as the original recipe, so if bourbon fans reacted simply because they want to get drunk faster, well, that seems misguided.
Then again, how many sh*tfaced bourbon drinkers have done this kind of analysis? Probably very few. But that does remind me of a joke.
How many bourbon drinkers does it take to change a light bulb?
Just one. Have him drink an entire bottle, then hold the bulb as the room spins.
Or this one that’s a little more mathy.
How many math department chairs does it take to change a light bulb?
Just one. He holds the bulb, and the world revolves around him.