Archive for June, 2021
Math Puzzles with Letters
This week on the NPR Sunday Puzzle, host Will Shortz offered the following challenge:
Name a famous city in ten letters that contains an s. Drop the s. Then assign the remaining nine letters their standard value in the alphabet — A = 1, B = 2, C = 3, etc. The total value of the nine letters is only 25. What city is it?
It’s not much of a spoiler to note that the average value of those nine letters must be less than three, since their sum “is only 25.” Consequently, a lot of those letters must occur at the beginning of the alphabet and — if eight of them were a‘s — there would be no letters later than q in the name of the city. But that’s as much as I’ll say; you can solve the puzzle on your own. (When you do, you can submit your answer for a chance to play next week’s on-air puzzle live with Will Shortz.)
Mathematician Harold Reiter uses a similar problem with elementary school students. Using the same idea — that each letter has a value (in cents) equal to its position in the alphabet — he asks students to find a dollar word, that is, a word whose letters have a sum of 100. As it turns out, there are many. Based on a nonexhaustive search, there are at least 3,500 dollar words, and likely a whole lot more. In a quick perusal of the list, one word jumped out: oxygon. Nope, that’s not a typo. It’s an archaic term meaning “a triangle with three acute angles.”
All of this talk of letters reminds me of my favorite puzzle, which I call Product Values. Using the same scheme — that is, A = 1, B = 2, C = 3, etc. — find the product value of a word by multiplying the values of the letters. So, for instance, cat has a product value of 3 × 1 × 20 = 60. How many words can you find that have a product value of 100? Based on the ENABLE word list, there are nine. (If you need some help, you can use the Product Value Calculator at www.mathjokes4mathyfolks.com.)
To end this post, a few math jokes that involve letters:
And Satan sayeth, “Let’s put the alphabet in math.” Bwa-ha-ha-ha-ha.
Romans had no trouble with algebra, because X was always equal to 10.