## Archive for May 22, 2012

### Name Dropping

Name dropping is the practice of mentioning the name of illustrious or famous people in casual conversation. By implying a connection to that person, the dropper hopes to raise his social status to the level of the droppee.

Wikipedia says that name dropping is “usually regarded negatively.” I say that it’s downright obnoxious… unless, of course, you’re dropping the name of a long-deceased mathematician into conversation for your own amusement. In that case, it is not only acceptable but strongly encouraged.

For instance, imagine that your friend suddenly shows up at your house and announces, “I just proved the parallel postulate!” It would be perfectly appropriate to respond as follows:

Are Eucliding me?

The following is a list of other ways that you might consider working mathematicians’ names into daily conversation. Good luck! And when you use one of these at a cocktail party and you’re the only one who laughs, just remember — it’s not because it isn’t hysterical; it’s just that none of the other attendees are as sophisticated as you.

- I’m ready, willing, and Abel, but I still can’t solve a quintic equation with radicals.
- What’s the sum of the first 100 positive integers? Your Gauss is as good as mine.
- What’s good for pa is good Fermat!
- I just proved the minimax theorem, and I feel like a Neumann.
- Either he Cantor he won’t!
- Did you thay thomething? Noether!
- Banach, Banach. Ba-who’s ba-there?
- Math jokes make me say Hardy har har.
- I’ll figure out the strategy to this game, Conway or another!
- Why, you dirty little Pascal!
- Math is good Fourier soul!
- He wouldn’t see her until his book was published… but he Kepler in his thoughts.

Notes:

- Neils Henrik Abel proved that quintic equations couldn’t be solved with radicals.
- It is claimed that Carl Friedrich Gauss found the sum of the integers 1 + 2 + 3 + … + 100 at an early age by recognizing that there were 50 pairs, each pair adding to 101.
- John von Neumann proved the minimax theorem.
- John Horton Conway did a lot of work in combinatorial game theory.
- Johannes Kepler’s engagement to Barbara Müller almost fell apart while he was finalizing
*Mysterium*.

And, of course, there is this old gem:

A mathematical horse was able to learn arithmetic, algebra, and even Euclidean geometry. But no matter what the trainer tried, the horse just couldn’t master analytic geometry. Moral: You can’t put Descartes before the horse.